ldctbench.methods.wganvgg.network
Discriminator(input_size)
Bases: Module
Discriminator (Critic) for WGAN-VGG training
Parameters:
-
input_size(int) –Input size of images fed in forward pass.
add_block(layers, ch_in, ch_out, stride)
staticmethod
Append Conv -> LeakyReLU block to layer list.
Parameters:
-
layers(List[Module]) –List of layers
-
ch_in(int) –Number of input features
-
ch_out(int) –Number of output features
-
stride(int) –Desired stride of the conv layer
Returns:
-
List[Module]–Layer list with appended layer.
conv_output_size(input_size, kernel_size_list, stride_list)
staticmethod
Compute output size after feature extractor.
Parameters:
-
input_size(int) –Input size of images fed in forward pass.
-
kernel_size_list(List[int]) –List of kernel sizes for each layer.
-
stride_list(List[int]) –List of strides for each layer.
Returns:
-
int–Output size after feature extractor.
Model(args)
Bases: Module
Generator for WGAN-VGG
Parameters:
-
args(Namespace) –Command line arguments passed to the model.