ldctbench.methods.wganvgg.network
Discriminator(input_size)
Bases: Module
Discriminator (Critic) for WGAN-VGG training
Parameters:
-
input_size
(int
) –Input size of images fed in forward pass.
add_block(layers, ch_in, ch_out, stride)
staticmethod
Append Conv -> LeakyReLU block to layer list.
Parameters:
-
layers
(List[Module]
) –List of layers
-
ch_in
(int
) –Number of input features
-
ch_out
(int
) –Number of output features
-
stride
(int
) –Desired stride of the conv layer
Returns:
-
List[Module]
–Layer list with appended layer.
conv_output_size(input_size, kernel_size_list, stride_list)
staticmethod
Compute output size after feature extractor.
Parameters:
-
input_size
(int
) –Input size of images fed in forward pass.
-
kernel_size_list
(List[int]
) –List of kernel sizes for each layer.
-
stride_list
(List[int]
) –List of strides for each layer.
Returns:
-
int
–Output size after feature extractor.
Model(args)
Bases: Module
Generator for WGAN-VGG
Parameters:
-
args
(Namespace
) –Command line arguments passed to the model.