Skip to content

Denoising Algorithms

Implemented algorithms

Below we list all methods currently implemented in our benchmark suite

Name Method name Paper
CNN-10 cnn10 H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang, "Low-dose CT via convolutional neural network,” Biomedical Optics Express, vol. 8, no. 2, pp. 679–694, Jan. 2017
RED-CNN redcnn H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang, “Low-dose CT with a residual encoder-decoder convolutional neural network,” IEEE Transactions on Medical Imaging, vol. 36, no. 12, pp. 2524–2535, Dec. 2017
WGAN-VGG wganvgg Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun, and G. Wang, “Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1348– 1357, Jun. 2018.
ResNet resnet A. D. Missert, S. Leng, L. Yu, and C. H. McCollough, “Noise subtraction for low-dose CT images using a deep convolutional neural network,” in Proceedings of the Fifth International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, UT, USA, May 2018, pp. 399–402.
QAE qae F. Fan, H. Shan, M. K. Kalra, R. Singh, G. Qian, M. Getzin, Y. Teng, J. Hahn, and G. Wang, “Quadratic autoencoder (Q-AE) for low-dose CT denoising,” IEEE Transactions on Medical Imaging, vol. 39, no. 6, pp. 2035–2050, Jun. 2020.
DU-GAN dugan Z. Huang, J. Zhang, Y. Zhang, and H. Shan, “DU-GAN: Generative adversarial networks with dual-domain U-Net-based discriminators for low-dose CT denoising,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12, 2022.
TransCT transct Z. Zhang, L. Yu, X. Liang, W. Zhao, and L. Xing, “TransCT: Dual-path transformer for low dose computed tomography,” in MICCAI, 2021
Trainable bilateral filter bilateral F. Wagner, M. Thies, M. Gu, Y. Huang, S. Pechmann, M. Patwari, S. Ploner, O. Aust, S. Uderhardt, G. Schett, S. Christiansen, and A. Maier, “Ultralow-parameter denoising: Trainable bilateral filter layers in computed tomography,” Medical Physics, vol. 49, no. 8, pp. 5107– 5120, 2022.

Test set performance

Below we report the results of the best performing networks of each method on the test dataset. They can be reproduced by running python test.py --print_table (see Test models).

Method SSIM (Chest) SSIM (Abdomen) SSIM (Neuro) PSNR (Chest) PSNR (Abdomen) PSNR (Neuro) VIF (Chest) VIF (Abdomen) VIF (Neuro)
LD 0.312 0.856 0.914 18.066 29.117 30.923 0.083 0.353 0.578
cnn10 0.559 0.907 0.928 27.307 32.737 31.968 0.175 0.455 0.642
redcnn 0.584 0.913 0.932 28.002 33.685 34.132 0.205 0.504 0.715
qae 0.557 0.903 0.928 27.115 32.304 31.923 0.167 0.424 0.618
wganvgg 0.505 0.893 0.92 25.324 30.906 29.208 0.137 0.39 0.566
resnet 0.581 0.912 0.932 28.032 33.583 33.853 0.21 0.5 0.705
qae 0.557 0.903 0.928 27.115 32.304 31.923 0.167 0.424 0.618
dugan 0.544 0.904 0.93 26.316 32.468 32.078 0.156 0.441 0.656
transct 0.538 0.89 0.893 26.736 30.924 27.363 0.155 0.387 0.461
bilateral 0.529 0.871 0.905 25.057 27.357 29.238 0.143 0.373 0.541